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ABSTRACT
In this paper we report on the LIMSI system used in the Nov’97

Hub-4E benchmark test on transcription of American English
broadcast news shows. There are two main differences from the
LIMSI system developed for the Nov’96 evaluation. The first con-
cerns the preprocessing stages for partitioning the data, and the
second concerns a reduction in the number of acoustic model sets
used to deal with the various acoustic signal characteristics.

The LIMSI system for the November 1997 Hub-4E evalua-
tion is a continuous mixture density, tied-state cross-word context-
dependent HMM system. The acoustic models were trained on
the 1995 and 1996 official Hub-4E training data containing about
80 hours of transcribed speech material. The 65K word trigram
language models are trained on 155 million words of newspaper
texts and 132 million words of broadcast news transcriptions. The
test data is segmented and labeled using Gaussian mixture mod-
els, and non-speech segments are rejected. The speech segments
are classified as telephone or wide-band, and according to gender.
Decoding is carried out in three passes, with a final pass incorpo-
rating cluster-based test-set MLLR adaptation. The overall word
transcription error of the Nov’97 unpartitioned evaluation test data
was 18.5%.

INTRODUCTION
The goal of the DARPA Hub-4 task is to transcribe radio

and television news broadcasts[1, 2]. These shows contain
a wide variety of segment types, of different acoustic and
linguistic natures. The signal quality is quite variable with
segments of clean, studio data, telephone data, as well as
speech in the presence of background noise or music and
pure music segments. The speech is of various linguistic
styles (ranging from prepared to spontaneous speech), pro-
duced by various types of speakers (news anchors, talk show
hosts, reporters, politicians, everyday people, etc.).

Our development work for the Nov’97 evaluation ad-
dressed mainly the problem of partitioning the continuous
stream of acoustic data and improving as well as simplify-
ing the acoustic models. The first step is to partition the data
into relevant segment types. A speech/non-speech decision
is made using Gaussian mixture models (GMMs), and the
speech segments are then clustered using an agglomerative
clustering algorithm and classified according to data type.

Long segments were subsequently chopped into chunks of
at most 30s using the chopping algorithm developed last
year[6]. In our 1996 Hub-4 system, the wide variety of
acoustic data was addressed by training specific acoustic
models for the different acoustic conditions. This resulted
in 5 different acoustic models sets to account for the differ-
ent acoustic data types, whereas this year only 2 acoustic
model sets are used.

In the remainder of this paper we provide an overview of
the LIMSI Nov’97 Hub-4E system, summarizing some of
our development work in preparation for the Nov’97 Hub-
4E evaluation, and differences with our Nov’96 system.

SYSTEM OVERVIEW

Our 1997 Hub-4E system uses the same basic technology
as used in previous evaluations, that is continuous density
HMMs with Gaussian mixture for acoustic modeling andn-
gram statistics estimated on large text corpora for language
modeling[4]. For acoustic modeling, 39 cepstral parame-
ters are derived from a Mel frequency spectrum estimated
on the 0-8kHz band (0-3.5kHz for telephone speech mod-
els) every 10ms. Each phone model is a tied-state left-to-
right CDHMM with Gaussian mixture observation densi-
ties (about 32 components). The modeled triphone con-
texts are selected based on their frequencies in the train-
ing data, with backoff to right-context, left-context, and
context-independent phone models.

Prior to word recognition, the data is partitioned into a
set of speech segments which are labeled as wide or tele-
phone bandwidth, andaccording to gender. Non-speech
segments are discarded. Word recognition is carried out
in three passes for each speech segment. In the first pass
a word graph is generated using a bigram language model.
The second decoding pass uses the word graph generated
by the 1st pass and a trigram language model. The final
decoding pass is carried out using adapted acoustic mod-
els. As done in our 1996 Hub-4 system, some of the ob-
served characteristics of the broadcast data were modeled
by using specific phone and word models for filler words
and breath noise. Compound words were used as a means



of modeling reduced pronunciations for common word se-
quences and acronyms.

TRAINING DATA

This year about 80 hours of transcribed task-specific
training data were available. These data were obtained from
the following shows: ABC Nightline, ABC World News
Now, ABC World News Tonight, CNN Early Edition, CNN
Early Prime, CNN Headline News, CNN Prime News, CNN
The World Today, CSPAN Washington Journal, NPR All
Things Considered, and NPR MarketPlace. For the portion
of the training data already used for our Nov’96 system, we
essentially kept the LDC August’96 release of the transcrip-
tions, as a variety of manual modifications had been carried
out on these. For the remaining training data we used pri-
marily the August’97 transcriptions, with some use of the
Feb’97 transcription release from LDC.

This data was used to train the Gaussian mixture models
needed for segmentation and the acoustic models for use
in word recognition. In contrast to our 1996 system where
some read-speech corpora were used, no additional acoustic
training data were used.

The language model training data consisted of the 1995
Hub-3 and Hub-4 LM material (155M words), and on the
broadcast news transcriptions from 1992 to 1996 (125M
words). The transcriptions of the acoustic training data
(866K words) were included 10 times.

DATA PARTITIONING

The segmentation and labeling procedure is as follows.
First, the non-speech segments are detected (and rejected)
using Gaussian mixture models (GMMs). Three GMMs
each with 64 Gaussians serve to detect speech, pure-music
and other. The acoustic feature vector used for segmenta-
tion contains 38 parameters. It is the same as the recognition
feature vector except that it does not include the energy, al-
though the delta energy parameters are included. The three
GMMs were each trained on about 1h of acoustic data, ex-
tracted from the training data after segmentation with the
transcriptions. The speech model was trained on data of all
types, excluding pure music segments and the silence por-
tions of speech over music segments. These models are ex-
pected to match all speech segments. The music model was
trained on portions of the data that were labeled as pure mu-
sic, so as to avoid mistakenly detecting speech over music
segments. The silence model was trained on the segments
labeled as silence during forced alignment, after excluding
the segments labeled as containing speech in the presence
of background music.

The segmentation algorithm generally works well, but we
observed that a long, noisy speech segment in the Nov’96
evaluation data was rejected, being mistakenly labeled as
music. In an attempt to avoid this kind of error, we also

experimented with using a 4th GMM for speech in the pres-
ence of background music, but there were only small dif-
ferences in the rejected segments. All segments labeled as
music or silence were removed prior to further processing.

A segmentation/clustering process is then carried out on
the speech segments using GMMs and an agglomerative
clustering algorithm. 10 iterations of the GMM reestima-
tion/clustering algorithm are run. The process is initialized
using a simple segmentation algorithm based on the detec-
tion of spectral change (similar to the first step used in the
Nov’96 CMU system[13]). The threshold is set so as to
over-generate segments. Initially, the cluster set consists
of a cluster for each segment. This is followed by Viterbi
training of the set of GMMs (one 8-component GMM per
cluster). The clustering technique is a bottom-up agglomer-
ative one, where each cluster is characterized by its GMM
distribution. When applied, this clustering procedure is
embedded in the Viterbi training process by replacing the
segmentation step in alternate iterations. The procedure is
controlled by 3 parameters: the minimum cluster size, the
GMM distance measure threshold, and the segment bound-
ary penalty.

The data partition is obtained by Viterbi decoding in the
last iteration. The segment boundaries are then refined using
the last set of GMMs with an additional relative energy-
based boundary penalty, within a 1s interval. This is done
to locate the segment boundaries at silence portions, so as
to avoid cutting words in two.

Speaker-independent GMMs corresponding to wideband
speech and telephone speech (each with 64 Gaussians) are
then used to label telephone segments. This is followed by
segment-based gender identification, using 2 sets of GMMs
with 64 Gaussians (one each for wideband and telephone
band).

The result of the partitioning process is a set of speech
segments with cluster labels (including gender and tele-
phone labels).

ACOUSTIC MODELING

The speech analysis in the LIMSI Nov’97 system[6, 7]
results in 39 cepstral parameters derived from a Mel fre-
quency spectrum estimated on the 0-8kHz band (or 0-
3.5kHz for telephone data) every 10ms. Foreach 30ms
frame the Mel scale power spectrum is computed, and the
cubic root taken followed by an inverse Fourier transform.
Then LPC-based cepstrum coefficients are computed. The
cepstral coefficients are normalized on a segment cluster ba-
sis using cepstral mean removal and variance normalization.
Each resulting cepstral coefficient foreach cluster has a zero
mean and unity variance. The 39-component acoustic fea-
ture vector consists of 12 cepstrum coefficents and the log
energy, along with the first and second order derivatives.

Various approaches were investigated to build acoustic



models from the available WSJ-si355 and Hub-4E training
data. Early experiments showed no clear gain from using
the WSJ data to initialize the acoustic models, so most of
the development work was carried out only with the Hub-4
data.

Last year 5 different model types were built to deal with
the varied acoustic conditions found in the Hub-4 data. This
year only wideband and telephone band models are used.
As was done last year, specific phone symbols are used to
explicitly model filler words and breath noises.

Two sets of gender-dependent acoustic models were built
using MAP adaptation of SI seed models for each of wide-
band and telephone band speech[9]. For computational rea-
sons, a smaller set of acoustic models is used in the bigram
pass to generate a word graph. These position-dependent,
cross-word triphone models cover 3521 contexts, with 8471
tied states and 32 Gaussians per state. For trigram decoding
a larger set of 8900 position-dependent, cross-word triphone
models with 11500 tied states was used.

The use of position-dependent models in the trigram de-
coding is new this year. In the past, position-dependent
acoustic models were used in the first decoding pass in
order to reduce the search space and the decoding time,
even though slightly better performance was obtained with
position-independent models. This year a slight gain was
observed on the development data with position-dependent
models.

LANGUAGE MODELING

The language models were trained on newspaper texts
(the 1995 Hub-3 and Hub-4 LM material – 155M words), on
the broadcast news (BN) transcriptions (years 92-96, 125M
words), and the 866K words in the transcriptions of the
1995-1996 acoustic training data LDC releases of Aug’96
and Aug’97. The 1995 Hub-3 and Hub-4 LM training texts
were processed as was done previously to clean errors inher-
ent in the texts or arising from the preprocessing tools. They
were also transformed to be closer to the observed Ameri-
can reading style[5]. Any attempts to use newspaper texts
distributed by LDC from a more recent period (up to the
limit of June 1996, about 153M words) led to a negliga-
ble decrease in perplexity and an increase in the recognition
word error rate.

The 65K word LMs were built using the CMU-
Cambridge Statistical Language Modeling Toolkit[3]. The
trigrams from the BN training transcriptions (820K words)
as well as those in 1995 Marketplace transcriptions (46K
words) were added in the LM with a weight of 10. Us-
ing this toolkit, we have chosen the Witten-Bell discounting
strategy because this method led to systematic (but quite
small, less than 1% relative) improvements as compared to
the classical Good-Turing strategy.

All distinct words in the transcriptions (25167 from the

BN training and 6451 from 1995 MarketPlace) were in-
cluded in the recognition vocabulary. The vocabulary se-
lection and language models were optimized on the 1996
Hub-4 F0 and F1 evaluation test set. The OOV rate is 0.66%
on the 1996 Hub-4 dev test data and 0.97% on F0-F1 part
of the Nov’96 eval test set.

As was done last year, the broadcast news training texts
were processed in order to be homogeneous with the pre-
vious texts, and filler words such as UH and UHM, were
mapped to a unique form. All of the training texts (1995
Hub-3 and Hub-4, and BN) were reprocessed in order to
add a proportion of breath markers (fbreathg) (4%), and
of filler words (ffwg) (0.5%)[6]. We also tried two tech-
niques to add n-grams withfbreathg andffwg: in the first
one, we constructed a language model after reprocessing the
texts to includefbreathg andffwg (i.e. fbreathg andffwg
are considered to be normal words), or we just added all
the trigrams containingfbreathg andffwg to a trigram con-
structed on a non-reprocesssed text (similar to what we do
for cross sentence trigrams). Although the second method
resulted in a perplexity decrease of about 5%, better recog-
nition results were obtained with the first method.

Two strategies were explored to add cross sentence tri-
gram counts in the trigram model[12]: add the whole texts
with and without sentences boundaries, and renormalize the
counts; or add only the cross sentence trigrams. Both strate-
gies led to similar results in terms of perplexity and recog-
nition error. For the evaluation, the language models were
constructed using the second approach.

LEXICAL MODELING

The recognition vocabulary contains 65,252 words and
72,788 phone transcriptions. This year the lexicon was ex-
tended to include about 2900 new words found in the 1997
February and August transcription releases. Many of the
new words were proper names, whose pronunciations were
verified by listening to the training data. Pronunciations are
based on a 48 phone set (3 of them are used for silence,
filler words, and breath noises). The filler and breath phones
were added to model these effects, which are relatively fre-
quent in the broadcast data and are not used in transcribing
other lexical entries. A pronunciation graph is associated
with each word so as to allow for alternate pronunciations,
including optional phones. Frequently occuring inflected
forms were verified to provide more systematic pronuncia-
tions.

As in last year’s system, the lexicon contains the most
common 1000 acronyms found in the training texts[8], and
compound words to represent frequent word sequences[6].
This provides an easy way to allow for reduced pronuncia-
tions such as /l"mi/ for “let me” and /ĝ nx/ for “going to”
or a syllabic-n for the word “and” in “AT&T”



WORD DECODING

Prior to decoding, segments longer than 30s are chopped
into smaller pieces so as to limit the memory required for
the trigram decoding pass. The chopping algorithm is the
same as was used last year[6]. A bimodal distribution is
estimated by fitting a mixture of 2 Gaussians to the log-
RMS power for all frames of the segment. This distribution
is used to determine locations which are likely to correspond
to pauses, thus being reasonable places to cut the segment.
Cuts are made at the most probable pause 15s to 30s from
the previous cut.

Word recognition is performed in three steps: 1) word
graph generation, 2) trigram pass, 3) cluster-based acous-
tic model adaptation. The word graph is generated using
a 65K word bigram backoff language model. This step
uses a gender-specific sets of position-dependent triphones
with about 8500 tied states and a small bigram language
model (about 2M bigrams). Differents acoustic models are
used for telephone and wideband segments. The sentence
is then decoded using the word graph generated in the first
step with a large set of gender-dependent acoustic models
(position-dependent triphones with about 11500 tied states)
and a 65K word trigram language model (including 8M bi-
grams and 16M trigrams). Finally, unsupervised acoustic
model adaptation (both means and variances) is performed
for each cluster using the MLLR technique[11], prior to the
last decoding pass with the adapted models and the trigram
LM. The mean vectors are adaptated using a single block-
diagonal regression matrix, and a diagonal matrix is used to
adapt the variances.

EXPERIMENTAL RESULTS

For development data we used the Nov’96 development
and evaluation data sets. Development was carried out using
the partitioned evaluation segments, focusing mostly on the
F0 (prepared) and the F1 (spontaneous) data types.

In the Nov’96 evaluation, LIMSI reported results only for
the partitioned evaluation (PE) component, with an overall
word error rate is 27.1%. The PE condition assumes that
both the segment boundaries and the data type (F0-Fx) are
known, but automatically making some of the distinctions
is not so evident. We therefore explored two alternatives to
see the importance of such prior information: the first uses
only the segment boundaries but not the data type classifi-
cation; and the second uses no prior information (unparti-
tioned condition).

In [7] we showed that using only two model sets (for
wideband and telephone band, selected automatically) in-
stead of 5 type-specific model sets resulted in a only slight
increase in word error (about 1% relative in the second de-
coding pass with a trigram language model, making use of
the word graphs generated with the first pass type-specific
acoustic model sets). This indicated that given the segment

boundaries, a priori data type classification does not criti-
cally affect overall performance. Similar results were re-
ported by BBN last year[10].

We explored the no prior knowledge (unpartitioned) con-
dition using the Marketplace show from the 1996 develop-
ment data. A two-way classification was used dividing the
data into wideband and bandlimited segments. The tele-
phone segments in the show were correctly detected, with
boundary locations close to those marked manually. All
segments longer than 30s were subsequently chopped into
chunks, andeach chunk was processed independently. De-
coding the telephone speech segments with the telephone
speech models and all the other segments with the wide-
band models, resulted in a word error of 18.7%. This error
rate can be compared with the 16.7% word error rate ob-
tained when the segment boundaries, but not the data type,
are known. Thus, a relatively small degradation is observed
with a substantially simpler system.

The data partitioning procedure used for the Nov’97 eval-
uation was not optimized by minimizing the word error rate.
It was subjectively evaluated by comparing the resulting
partitions manual segmentations of various data sets. Only
one complete run was carried out on the Nov’96 UE data
(after the Nov’97 evaluation).

Concerning the acoustic models, this year there was dou-
ble the amount of transcribed training data available com-
pared to last year. We evaluated different acoustic model
sets, training only on Hub-4 data and Hub-4 combined with
other read-speech corpora (mainly WSJ). The observed dif-
ferences on the F0/F1 portion of the development data were
quite small (a few percent relative). The best results were
obtained by training on only the 80 hours of Hub-4E acous-
tic data, with a relative error reduction of 7% on the Nov’96
eval data compared to last year’s acoustic models which
were trained on the WSJ corpus and the 40 hours of Hub-4
data.

The combined effect of the new language models and
modifications to the lexicon gave an additional small (2%
relative) error reduction.

Table 1 compares the results on the eval96 and eval97
data sets. The high deletion rate on the eval96 data is mainly
due to 2 very noisy speech segments which were classified
as non-speech. (This type of error was less frequent on the
eval97 data which was of higher quality on average.) How-
ever since the word error is very high on these segments, re-
jecting them has only a marginal effect on the overall word
error rate. The result is a higher deletion rate and a lower
substitution one.

SUMMARY

In this paper we have presented the LIMSI 1997 Hub-4E
system and some of our development work in preparation
for the evaluation. The system architecture is very similar



Test set Corr Sub Del Ins Err
eval96 77.8 15.4 6.9 3.1 25.3
eval97* 84.1 12.4 3.5 2.5 18.5

Table 1: Word error rates for of unpartitioned evaluation on1996
and 1997 eval test data. (* Official NIST score).

to that of our Nov’96 Hub-4 PE system, the main differ-
ence being the addition of an algorithm to partition the data.
Keeping the same architecture, our development effort fo-
cused on acoustic modeling, making use of the additional
transcribed training data, and improving the lexicon and lan-
guage models.

The data partitioning algorithm makes use of Gaussian
mixture models and an iterative segmentation and cluster-
ing procedure. The resulting segments are labeled using 64-
component GMMs as pure music, wideband (male/female),
and narrowband (male/female). Cepstral mean normaliza-
tion is carried out on a cluster basis, instead of on individual
segments. Similarly, cluster-based unsupervised adaptation
of the means and variance is used.

Concerning acoustic modeling, last year we found that
with 40 hours of transcribed broadcast news data, better
models could be built by also using WSJ training data.
This year, with 80 hours of Hub-4 data available, we re-
considered the need for the read-speech data and observed
that acoustic models trained only on the Hub-4 data outper-
formed last year’s models.

Experiments comparing focus type specific models with
more general task-specific models resulted in only a slight
loss in performance. This performance difference does not
justify the additional burden in training and decoding with
specialized model sets, as reported in [10, 7]. As a conse-
quence, this year’s system had 2 gender-dependent sets of
acoustic models, compared to 5 last year. Concerning the
acoustic models we observed that word position dependent
contexts not only reduced computational requirements, but
also gave a small improvement in performance. The word
error on the Nov’97 Hub-4E data was 18.5%.

REFERENCES
[1] Proc. DARPA Speech Recognition Workshop, Arden House,

February 1996.

[2] Proc. DARPA Speech Recognition Workshop, Chantilly,
February 1997.

[3] P. Clarkson, R. Rosenfeld, “Statistical Language modelling
using CMU-Cambridge Toolkit,” Proc. EuroSpeech’97,
Rhodes, Greece, pp. 2707-2710 September 1997.

[4] J.L. Gauvain, L. Lamel, G. Adda, M. Adda-Decker, “Spea-
ker-Independent Continuous Speech Dictation,”Speech
Communication, 15(1-2), pp. 21-37, October 1994.

[5] J.L. Gauvain, L. Lamel, M. Adda-Decker, “Developments in
Large Vocabulary Dictation: The LIMSI Nov94 NAB Sys-
tem,” Proc. ARPA Spoken Language Technology Workshop,
Austin, Texas, pp. 131-138, January 1995.

[6] J.L. Gauvain, G. Adda, L. Lamel, M. Adda-Decker, “Tran-
scribing Broadcast News: The LIMSI Nov96 Hub4 System,”
Proc. ARPA Speech Recognition Workshop, Chantilly, Vir-
ginia, pp. 56-63, February 1997.

[7] J.L. Gauvain, G. Adda, L. Lamel, M. Adda-Decker, “Tran-
scription of Broadcast News,”Proc. EuroSpeech’97,Rhodes,
Greece, pp. 907-910, September 1997.

[8] J.L. Gauvain, L. Lamel, G. Adda, D. Matrouf, “The LIMSI
1995 Hub3 System,”Proc. DARPA Speech Recognition
Workshop, Arden House, pp. 105-111, February 1996.

[9] J.L. Gauvain, C.H. Lee, “Maximuma PosterioriEstimation
for Multivariate Gaussain Mixture Observation of Markov
Chains,”IEEE Trans. on SAP, 2(2), pp. 291-298, April 1994.

[10] R. Schwartz, H. Jin, F. Kubala, S. Matsoukas, “Modeling
Those F-Conditions – Or Not,”Proc. DARPA Speech Recog-
nition Workshop, Chantilly, Virginia, pp.115-118, February
1997.

[11] C.J. Leggetter, P.C. Woodland, “Maximum likelihood linear
regression for speaker adaptation of continuous density hid-
den Markov models,”Computer Speech and Language,9(2),
pp. 171-185, 1995.

[12] K. Seymore, S. Chen, M. Eskenazi, R. Rosenfeld, “Language
and Pronunciation Modeling in the CMU 1996 Hub4 Evalua-
tion. Proc. DARPA Speech Recognition Workshop, Chantilly,
Virginia, pp. 141-146, February 1997.

[13] M. Siegler, U. Jain, B. Raj, R. Stern, “Automatic Segmen-
tation, Classification and Clustering of Broadcast News Au-
dio,” Proc. DARPA Speech Recognition Workshop, Chantilly,
Virginia, pp. 97-99, February 1997.


